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A semigroup S is called a regular band if the laws XX = x and xyxzx =xyzx hold in S. For all sub- 

varieties of the variety of regular bands a set-theoretic description of the free algebra is given. 

Moreover, it is proved that for fixed set of free generators these free algebras are subalgebras of 

the direct product of five elementary semigroups. 

If one investigates free algebras it is sometimes useful to have a set-theoretic 
description of them avoiding terms, concatenation of terms and reduction of terms 
to ‘normal form’. For some varieties of semigroups this was already done (cf. e.g. 
[l, 5,6,7,8,9]). The aim of this paper is to give such a description of the free algebras 
in the subvarieties of the variety of regular bands. Moreover, it is proved that for 
fixed set of free generators these free algebras are subalgebras of the direct product 
of five elementary semigroups. 

Definition 1. A semigroup S is called a band if xx=x for all XE S. A band S is called 
regular if xyxrx = xyzx for all x, y, 2 E S. 

Theorem 2 (cf. e.g. [2,3,4,7]). The lattice of allsubvarieties of the variety of regular 
bands consists of the band varieties shown in Diagram 1. 

In the following let X be some fixed set. Since we will consider free groupoids on 
X and since in any groupoid variety the empty groupoid is free on 0, we assume 
X+0. Moreover, in the following for any set A4 let 2M denote the power set on IV, 
let 2x denote the semilattice (Zx, U) and let 22x denote the semigroup (22x,.) where 

~117:=~u{u{M~ME~}uIv~NE~} (9JVr?E22X). 

In order to see that the latter groupoid forms a semigroup, observe that 

U{PIPE~~}=U{MIME~~}UU{NJNE~} for all %J?,Y?7E2* 

We are going to show that the free algebras on X in the subvarieties of the variety of 
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regular bands 

X_VXZX=.IYiX 

/ -\ 
left quasinormal bands right asinormal bands 

,eftxI]a;h /! zyx 
normal bands right regular bands 

xyx’xy<~~~~ghtx~bands left normal bands 

xyz ‘XZlIYtIx El.ou ps left zero semigroups 

xy=x\ xyr/x=x 

trivial semig?oups 

x=y 

Diagram 1. 

regular bands are subalgebras of the direct product of the following five semi- 
groups: the left zero semigroup on X, the right zero semigroup on X, the semilattice 
2x, the semigroup 22x and the dual of 22X. In some of the considered varieties the 
following construction of the free algebra is well known (cf. e.g. [7]). For the sake 
of completeness we provide a complete list of results: 

Theorem 3. The one-element semigroup is the free trivial semigroup on X. 

Theorem 4. Let FsL denote the subalgebra {ME 2x 1 M# 0, M finite) of 2x and 
define I: X+F&_ by I(X) := {x} (XC X). Then (Fsr, I) is the free semilattice on X. 

Theorem 5. Let FLz denote the Ieft zero semigroup on X and define I: X *FLz by 

I(X) :=x (XE X). Then (FLz, I) is the free left zero semigroup on X. The free right 
zero semigroup FRz on X is constructed dually. 

Theorem 6. Let FRB denote the direct product of FLz and FRz and define I :X+FRB 
by I(X) := (x,x) (XE X). Then (FRB, I) is the free rectangular band on X. 

Theorem 7. Let FLN denote the subdirect product {(x, Y) E FLz x Fsr Ix E Y} of FLz 
and F,, and define I: X-F,, by I(X) :=(x, {x}) (XE X). Then (FLN, I) is the free left 
normal band on X. The free right normal band FRN on X is constructed dually. 
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Theorem 8. Let FN denote thesubdirectproduct {(x, Y, y) EFLZ XF,L xF,, IXE Y3 y} 
of FLZr FS,_ and FRz and define t:X-+FN by 1(x):=(x, {x),x) (xEX). Then (FN,l) is 
the free normal band on X. 

Theorem 9. Let FLR denote the subalgebra { ZfJ? E Zzx 1 there exists some finite non- 
empty subset Y of X such that fm is a maximal chain in (2 y, c )} of 2”’ and define 
r:X*FLR by t(x):= (0, {x}} (xEX). Then (F LR, I) is the free left regular band on X. 
The free right regular band FRR on X is constructed dually. 

Proof. If Y,, Y, are finite non-empty subsets of X, if !JJ?, is a maximal chain in 
(2 yl, 5 ) and if %J?l is a maximal chain in (2 y2, G) then !3?,!& is a maximal chain in 

(2 you y:, r ). Hence, FLR is a subalgebra of 22x. Since 

~~~=~u{U{MIME~}ulvINE~} 

U{~{M~ME~}u~{N~NE~7)UP(PEFg} 

for all m, ‘3, ‘p E &a, FLR is a left regular band. Moreover, FLR = OX). In order to 
prove freeness of (FLR, I) let f be some mapping from X to some left regular band S. 
Then the mapping g : FLR +S defined by 

g({0,{x,},(x,,X2}t...,{X,r...,X,}}):=f(X*)...f(X,) 

(nrl,x, ,..., x,EX,x 1, . . . ,x, mutually distinct) 

is a homomorphism from FLR to S satisfying gr= f. Applying a duality argument 
completes the proof of the theorem. 

Theorem 10. Let FLQN denote the subdirect product 

((~,~>E~LRxFRzIU(MIME~~)~~) 
of FLR and FRz and define t:X+FQNN by t(x):=((O, {x}},x) (xEX). Then (FLQNrt) 
is the free left quasinormal band on X. The free right quasinormal band FRoN on X 
is constructed dually. 

Proof. Since - by Theorem 9, Theorem 5 and Theorem 2 - FLR and FRz are quasi- 
normal bands, this is also true for FLaN. Obviously, FLQN = OX>. In order to prove 
freeness of (FLQN, I) let f be some mapping from X to some quasinormal band S. 
Then the mapping g : FLQN -S defined by 

g((0, {x,L {Xl,X2)r . . . . 1x1. . ..x.~~.x):=f(x,) . ..f(x.)f(N 

(n L Lx,, . . . X,,,XE X.x,, . . . x,, mutually distinct) 

is a homomorphism from FLQN to S satisfying gl= f. Applying a duality argument 
completes the proof of the theorem. 
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Theorem 11. Let FR denote the subdirect product 

~(~~,~~)~FLRxFRRIU{~I~~~~)=U{~I~~~~~ 

of FLR and FRR and define I:X+FR by ~(x):=({0,{x}},{0,{x}}) (xEX). Then 
(FR, I) is the free regular band on X. 

Proof. From [5] it follows that (FR,I) is the free algebra on X in the semigroup 
variety V the corresponding set of equations of which is 

Ix 1 . ..x.=yt . . . YmIn,mrL x~,...,x,,Yl,...,Y~Ex, 

{0,{x*},(x,,XZ},.~~,{~,,...,~,})=~0~~Y,~~~Y,~Yz~~~~~~~Y,~...~Ym~~ 

{0,~x,},(X,,X”_,}r~~~,{~,,...,~,J}={0~~Ym~,~Ym~Ym-*~r~~~r~Ymr~~~~Y,~~~. 

Hence V is contained in the variety of regular bands. Because of Theorem 2 this 
inclusion is not proper. 
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